Chem. Ber. 118, 4433-4438 (1985)

Neue planarchirale [2.2]Phane – Synthese, Struktur und chiroptische Eigenschaften

Kurt Meurer*), Friedhelm Luppertz und Fritz Vögtle*

Institut für Organische Chemie und Biochemie der Universität Bonn, Gerhard-Domagk-Str. 1, D-5300 Bonn 1

Eingegangen am 31. Januar 1985

Darstellung, Konformationen und chiroptische Eigenschaften der zehngliedrigen planarchiralen Naphthalinophane 4, 5 (heterocyclisch) und 6-8 (carbocyclisch) werden beschrieben. Die Enantiomeren von 4 und 6 werden mitteldruckchromatographisch an $(-)-\alpha-(2,4,5,7-Tetranitro-9-fluorenylidenaminooxy)propionsäure (TAPA) angereichert und polarimetrisch und circulardichrographisch untersucht. ¹H-NMR-Spektren belegen die$ *anti*-Konformationen für 4 und <math>6-8, während sie für 5 eine konformativ flexible *syn*-Konformation nahelegen.

New Planarchiral [2.2]Phanes – Syntheses, Structures, and Chiroptical Properties

Preparation, conformations and chiroptical properties of the ten-membered, planarchiral naphthalinophanes 4, 5 (heterocyclic) and 6-8 (carbocyclic) are described. 4 and 6 are chromatographically enriched using $(-)-\alpha-(2,4,5,7)$ -tetranitro-9-fluorenylideneaminooxy)propionic acid (TAPA). Optical rotations and circular dichroisms of 4 and 6 are determined. The *anti* conformations are ascertained for 4 and 6-8 by ¹H NMR spectroscopy, whereas a conformational flexible *syn* conformation is supposed for 5.

Geeignete carbo-¹⁾ and heterocyclische^{2,3)} [2.2]Phane wie 1-3 haben sich als nützliche Modellstrukturen zur Untersuchung der Planarchiralität⁴⁾ und Helicität⁵⁾ und ihrer Konsequenzen hinsichtlich der Moleküleigenschaften erwiesen.

Die Geometrie einiger Vertreter dieser Verbindungsgruppe im Kristall, ihre Konformation in Lösung sowie ihre chiroptischen Eigenschaften sind inzwischen z. T. gut bekannt^{1-3,6)}. Für vergleichende Betrachtungen von Struktur/Eigenschaften-Beziehungen fehlen jedoch noch weitere Beispiele mit modifiziertem Gerüst. Wir haben daher

^{*)} Neue Adresse: Wissenschaftliches Hauptlaboratorium, Bayer AG, D-5090 Leverkusen 1.

[©] VCH Verlagsgesellschaft mbH, D-6940 Weinheim, 1985 0009-2940/85/1111-4433 \$ 02.50/0

die Palette niedermolekularer, geometrisch übersichtlicher, planarchiraler Moleküle durch Synthese der carbo- und heterocyclischen Naphthalinophane^{7,8)} 4-8 erweitert.

1. Synthesen

Das heteracyclische⁹⁾ Naphthalinophan **4** wurde aus der vom 1,3-Dimethylnaphthalin abgeleiteten Bis(brommethyl)-Verbindung und *S*,*S*-Di-Alkalimetallion-1,3-benzoldithiolat unter Verdünnungsbedingungen¹⁰⁾ hergestellt. Der Caesium-Effekt¹¹⁻¹⁵⁾ erweist sich auch hier als äußerst nützlich: Die Ausbeuten von **4** steigen etwa um das Dreifache bei Einsatz der Caesium- anstelle der Natriumsalze.

Alle Caesium-assistierten Cyclisierungen wurden wie früher²⁾ in Ethanol/Benzol-Gemischen vorgenommen. Das Pyridinophan **5** war durch Cyclisierung von 1,3-Bis(brommethyl)naphthalin und 2,6-Pyridindithiol¹⁶⁾ in Methylethylketon als Lösungsmittel unter sorgfältiger Anwendung des Verdünnungsprinzips nur in geringen Ausbeuten (ca. 1%) erhältlich. Ein Caesium-Effekt bei gespannten Pyridinophanen wurde bisher nicht gefunden¹⁷⁾. Möglicherweise stört die Beteiligung oder Konkurrenz des Pyridin-Stickstoffs an der Caesiumion-Komplexierung.

Die Kohlenwasserstoffe 6-8 können durch Umsetzung von 1,3-Bis(brommethyl)naphthalin und 1,3-Bis(brommethyl)benzol mit Phenyllithium in Benzol bei Raumtemperatur hergestellt werden. Die Diastereomeren 7, 8 ließen sich mit üblichen chromatographischen Verfahren bisher nicht voneinander trennen.

Zur Deutung des Caesium-Effekts bei der Cyclisierung zu den hier beschriebenen gespannten mittelgliedrigen Ringen scheinen uns die bisherigen Annahmen¹¹, welche die Bevorzugung der intra- gegenüber intermolekularen Reaktionen bei nicht oder wenig gespannten Ringen zu erklären versuchen, nicht ausreichend. Wie in Abb. 1 skizziert, gehen wir davon aus, daß bei der erforderlichen äquimolaren Anwesenheit die Caesium-Ionen wegen ihres größeren Radius eher als andere Alkalimetall-Ionen in der Lage sind, die Reaktionszentren intramolekular zu überbrücken. Dadurch sollte die Bildung sterisch gespannter Produkte wie 4 wegen der Vororientierung der Reaktionszentren im Übergangszustand durch das Caesium-Ion begünstigt werden. Die sterische Abstoßung der intraanularen Wasserstoffatome H, müßte im Falle des vorübergehenden Einbaus eines kleineren Natrium-Ions in die Brücke größer ausfallen (Abb. 1), wodurch intermolekulare Reaktionen eher konkurrenzfähig sind. Auf diese Weise kann bei der Caesium-assistierten Cyclisierung zunächst eine weniger gespannte, da elfgliedrige Zwischenstufe durchlaufen werden, aus der durch Extrusion des Caesium-Ions der gespannte Zehnring energiegünstig entstehen kann. Eine formale Parallele für solche ausbeutefördernden Vor-Überbrückungen findet man bei Sulfidcyclisierungen mit anschließender Schwefelextrusion¹⁸). Die anderen erörterten Wirkungsweisen der Caesium-Assistenz¹²⁻¹⁵) können dabei durchaus mitspielen.

Abb. 1. Zur Deutung des Caesium-Effekts bei intramolekularen Cyclisierungen zu gespannten Ringen; Vergleich der möglichen Wirkungsweise von Caesium- gegenüber Natrium-Ionen am Beispiel der Darstellung von 4. Die sterische Abstoßung der inneren aromatischen Wasserstoffatome ist in beiden Skizzen als gleich weit fortgeschritten angenommen. Die Pfeile deuten auf die anschließende inter- (links) bzw. intramolekulare Reaktion (rechts)

2. Konformationen

Die Protonenresonanz-Spektren erlauben die Zuordnung der *anti*-Konformation für die planarchiralen Naphthalinophane 4 und 6-8 [vgl. 4(a) in Abb. 2]. Die charakteristischen hochfeldverschobenen Signale der inneren Protonen H_i (i = intraanular) findet man für 4 bei δ = 4.66 (d, J_m = 2 Hz) und 5.36 (t, J_m = 2 Hz), für 6 bei δ = 4.10 (t, J_m = 2 Hz) und 4.19 (d, J_m = 2 Hz), für 7, 8 bei δ = 4.41 (d, J_m = 2 Hz) und 4.48 (d, J_m = 2 Hz). Die stufenartige Konformation der [2.2]Phane 4 und 6-8 wird außerdem durch die AB-Systeme der CH₂-Gruppen bestätigt, z. B. für 4: δ = 3.30, 4.76, J_{AB} = 13 Hz.

Abb. 2. anti-(a) und syn-Konformationen (s) am Beispiel von 4 und 5

Das ¹H-NMR-Spektrum des Pyridinophans 5 unterscheidet sich dagegen grundlegend von denjenigen von 4 und 6. Es wird kein zu hohem Feld verschobenes Signal eines intraanularen Protons (H_i) beobachtet. Für die CH₂-Protonen erhält man zwei gleich intensive Dublett-Absorptionen bei $\delta = 3.83$ (2H) und 5.06 (2H) mit J = 13 Hz (400 MHz).

Das Spektrum von 5 läßt sich eher mit denen derjenigen 1,11-Dithia[3.3]metacyclophane vergleichen, für die die *syn*-Konformation gesichert ist¹⁹⁾. Dagegen wurden früher beschriebenen [2.2]Pyridinophanen¹⁶⁾ aufgrund hochfeldverschobener Protonen und AB-Systeme *anti*-Konformationen zugeordnet. Offenbar begünstigen der große C – S-Bindungsabstand (um 184 pm), der geringere Raumbedarf des Elektronenpaars am Pyridin-Stickstoff, eine denkbare anziehende intramolekulare π -Donor-Acceptor-Wechselwirkung zwischen beiden aromatischen Ringen und insbesondere eine sterische Wechselwirkung zwischen 8-ständigen Naphthalin- und 1-ständigen Wasserstoffatomen die Ausbildung einer *syn*-Konformation [5(s) in Abb. 2]. Bisher sind nur wenige *syn*-Konformationen im [2.2](1,3)Phan-System bekannt²⁰, die nicht durch voluminöse Substituenten¹⁹⁾ und bestimmte Synthesemethoden erzwungen wurden.

Die Röntgenstrukturanalyse von (\pm) -6 wurde mit aus CDCl₃ gewonnenen Einkristallen versucht²¹). Mit den erhaltenen Daten konnte zwar die stufenförmige Struktur bestätigt werden, jedoch stießen Versuche zur Strukturverfeinerung bislang auf Schwierigkeiten.

3. Racemattrennungen und chiroptische Eigenschaften

4 und 6 sind aufgrund der vorliegenden *anti*-Konformation planarchiral; ihre Racemate lassen sich an $(-)-\alpha$ -(2,4,5,7-Tetranitro-9-fluorenylidenaminooxy)propionsäure (TAPA)²²⁾ partiell in die Enantiomeren trennen (s. Exp. Teil). 4 konnte vor kurzem bereits vollständig an (+)-Poly(triphenylmethylmethacrylat)²³⁾ erfolgreich in die Enantiomeren gespalten werden²⁴⁾. Eine Trennung an Triacetylcellulose (Ethanol) war wegen Löslichkeitsproblemen unbefriedigend²⁵⁾. Versuche, 4 und 6 an (*R*)-*N*-(Dinitrobenzoyl)phenylglycin zu trennen²⁶⁾, schlugen fehl. Die bisher gefundenen Drehwerte liegen für 4 bei $[-13]_{436}^{R36}$ (Toluol/*n*-Heptan), für 6 bei $[+7.2]_D^{RT}$ (*n*-Heptan). Cotton-Effekte beobachtet man für 6 bei 290 und 225 nm, für 4 bei 243 und 265 nm (s. Exp. Teil).

Experimenteller Teil

1,12-Dithia[2](1,3)benzeno[2](1,3)naphthalinophan (4): In einer 2C-VP-Apparatur²⁷⁾ werden zu 1.25 l vorgelegtem, siedendem Benzol aus zwei Präzisionstropftrichtern simultan die Lösungen A und B innerhalb von 8 h getropft. – Lösung A: 0.68 g (4.79 mmol) 1,3-Benzoldithiol²⁸⁾ in 125 ml Ethanol. Lösung B: Es werden 1.50 g (10.0 mmol) Caesiumhydroxid [bzw. 0.40 g (10.0 mmol) Natriumhydroxid] in 3 – 5 ml Wasser sowie 1.50 g (4.79 mmol) 1,3-Bis(brommethyl)naphthalin in 100 ml Benzol gelöst und mit Ethanol auf ein Gesamtvolumen von 140 ml ergänzt. Nach beendeter Zugabe und 2 d Rückflußsieden wird das Lösungsmittel i. Vak. abdestilliert. Der Rückstand wird in Dichlormethan aufgenommen, abfiltriert, mit Dichlormethan gewaschen und die vereinigten Filtrate werden über Na₂SO₄ getrocknet. Trockensäulenchromatographie [Silicagel Woelm, 0.063 – 0.1 mm, Chloroforni/Petrolether (40 – 60 °C)/Toluol (2:1:1)] ergibt 98.7 mg (7%) 4 im Falle von NaOH und 310 mg (22%) im Falle von CsOH. Schmp. 180 – 182 °C (Ethanol). – $R_{\rm F}$ -Wert: 0.85 [CHCl₃/Petrolether (40 – 60 °C) 1:1]. – ¹H-NMR (CDCl₃/TMS_{int.}, 90 MHz): δ = 3.30, 4.76 (AB, 2H, J_{AB} = 13 Hz), 3.59, 4.08 (AB, 2H, J_{AB} = 13 Hz), 4.66 (d, 1 H, J_m = 2 Hz, H_i), 5.36 (t, 1 H, J_m = 2Hz, H_i), 6.95 – 8.18 (m, 8 aromat. H).

 $\begin{array}{ccc} C_{18}H_{14}S_2 \ (294.4) & \text{Ber. C } 73.43 \ H \ 4.79 \ \ \text{Gef. C } 73.48 \ H \ 4.80 \\ & \text{Ber. 294.0534} \ \ \text{Gef. 294.0516} \ (M^+, \ MS) \end{array}$

1,12-Dithia[2](1,3)naphthalino[2](2,6)pyridinophan (5): 1.56 g (5.00 mmol) 1,3-Bis(brommethyl)naphthalin²⁹⁾ in 50 ml dest. Methylethylketon sowie 0.715 g (5.00 mmol) 2,6-Pyridindithiol¹⁶⁾ und 0.84 g (15.0 mmol) Kaliumhydroxid in 500 ml 7proz. wäßrigem Ethanol werden während 6 h simultan aus zwei Präzisionstropftrichtern zu 1 l gerührtem, siedendem Methylethylketon, das 1.19 g (10.0 mmol) Kaliumbromid enthält, getropft (2C-VP-Apparatur²⁷⁾). Nach 36 h Rückflußsieden wird heiß filtriert, das Filtrat i. Vak. eingedampft und in Dichlormethan aufgenommen. Man wäscht zweimal mit Wasser, trocknet über Na₂SO₄ und chromatographiert (Silicagel Woelm, 0.032 – 0.063 mm): 1.46 mg (1%). – $R_{\rm F}$ -Wert: 0.91 [Petrolether (40 – 60 °C)/CHCl₃ 1:1]. – ¹H-NMR (CDCl₃/TMS_{int.}, 400 MHz): δ = 3.83 (d, 2H, ²J_{H,H} = 13 Hz, – CH₂), 5.06 (d, 2H, ²J_{H,H} = 13 Hz, – CH₂), 6.70 (d, 2 aromat. H), 7.20 (t, 1 aromat. H), 7.35 (t, 2 aromat. H), 7.68 (q, 2 aromat. H), 7.84 (m, 2 aromat. H).

[2](1,3)Benzeno[2](1,3)naphthalinophan (6) und [2](1,3)Naphthalino[2](1,3) naphthalinophane (7,8): 1.50 g (4.78 mmol) 1,3-Bis(brommethyl)naphthalin²⁹⁾ und 2.51 g (9.56 mmol) 1,3-Bis(brommethyl)benzol in 150 ml absol. Benzol werden innerhalb von 6 h zu einer Lösung von 10 ml (ca. 21.4 mmol) Phenyllithium in 80 ml Benzol getropft. Man läßt 48 h bei Raumtemp. rühren, wobei nach 1 – 2 h eine orange Färbung auftritt. Anschließend wird 2 h unter Rückfluß erhitzt, langsam abgekühlt und mit 80 ml Wasser versetzt. Die organische Phase wird abgetrennt, mit Wasser gewaschen, über Na₂SO₄ getrocknet und das Lösungsmittel i.Vak. entfernt. Säulenchromatographische Auftrennung des zurückbleibenden Öls an Kieselgel mit Petrolether (40 – 60 °C)/Benzol (6:1) ergibt 70 mg (5.7%) 6, 417 mg (22%) [2.2]Metacyclophan sowie 28 mg (1.9%) **7,8**-Gemisch. Daten von 6: Schmp. 175 – 177 °C (Ethanol). – $R_{\rm F}$ -Wert: 0.55 [Petrolether (40 – 60 °C)/Benzol 6:1]. – ¹H-NMR (CDCl₃/TMS_{int.}, 90 MHz): $\delta = 2.50$, 3.49, 4.05 [ABX, 8H, [CH₂]₂], 4.10 (t, $J_m = 2$ Hz, H_i), 4.19 (d, $J_m = 2$ Hz, H_i), 7.00 – 8.12 (m, 8 aromat. H).

 $\begin{array}{c} C_{20}H_{18} \ (258.2) \\ \text{Ber. } C\,92.78 \ \text{H} \ 7.22 \\ \text{Ber. } 258.1408 \\ \text{Gef. } 258.1380 \ (\text{M}^+, \text{MS}) \end{array}$

Daten von 7, 8: Säulenchromatographische Auftrennung (Kieselgel Woelm, 0.063 - 0.1 mm) war nicht möglich. Schmp. ca. 220 °C (CHCl₃). – $R_{\rm F}$ -Wert: 0.66 [Petrolether (40 – 60 °C)/Benzol 5:1]. – ¹H-NMR (CDCl₃/TMS_{int.}, 90 MHz): $\delta = 2.00 - 2.50$ (m, 4H, CH₂), 3.25 – 3.43 (m, 2H, CH₂), 3.90 – 4.10 (m, 2H, CH₂), 4.41 (d, H_i), 4.48 (d, H_i), 7.40 – 8.28 (m, 10 aromat. H).

C₂₄H₂₀ (308.4) Ber. C 93.47 H 6.53 Gef. C 92.93 H 6.39 Ber. 308.1565 Gef. 308.1567 (M⁺, MS)

(+)- und (-)-1, 12-Dithia[2](1,3)benzeno[2](1,3)naphthalinophan [(+)- und (-)-4]: 50 g Kieselgel (Silicagel Woelm, 0.063 – 0.1 mm) werden mit 20proz. (-)-α-(2,4,5,7-Tetranitro-9-fluore-nylidenaminooxy)propionsäure (TAPA, $[\alpha]_D^{25} = 96$, Schmp. 190 °C] gut vermischt, in Dichlormethan aufgenommen und 1 h gerührt. Anschließend entfernt man das Dichlormethan und füllt unter Wasserstrahlvakuum eine Säule (Durchmesser 2 cm, Länge 50 cm). 50 mg (±)-4 werden in 3 ml *n*-Heptan/Toluol (4:1) gelöst und auf die Säule gebracht. Schon nach wenigen Sekunden bildet sich am oberen Rand die rote Charge-Transfer-Färbung aus. Die Durchflußrate betrug 3 – 4 ml/min, der Druck der Pumpe 3 bar. Insgesamt wurden 25 Fraktionen gesammelt. Die ersten fünf Fraktionen (8 mg) zeigten einen negativen Drehwert: $[-13]_{436}^{RT}$, $[-5]_{436}^{RT}$ (Toluol/*n*-Heptan 4:1). – CD (CH₃CN): λ_{max} [nm] ($\Delta\epsilon$): [265] (+0.42), [243] (-3.18). – Die letzten fünf Fraktionen (ca. 6 mg) zeigten positive Drehung: λ_{max} [nm] ($\Delta\epsilon$): [265] (-0.39), [243] (+3.0). – UV (EtOH): 4.9 × 10⁴ (240 nm), 2.4 × 10⁴ (222 nm), 0.7 × 10⁴ (295 nm).

(+)- und (-)-[2](1,3)Benzeno[2](1,3)naphthalinophan (6): 30 mg (\pm)-6 werden in 3 ml *n*-Heptan gelöst und auf die obige Säule gebracht. Schon nach wenigen Sekunden bildet sich am oberen Rand die rote Charge-Transfer-Färbung aus. Die Durchflußrate betrug 3 – 4 ml/min, der Druck der Pumpe 3 bar. Insgesamt wurden 20 Fraktionen gesammelt. Die ersten sechs Fraktionen (2.9 mg) zeigten einen negativen Drehwert: $[-5.6]_{D}^{DT}$ (*n*-Heptan). – CD (MeOH): λ_{max} [nm] ($\Delta\epsilon$): [290] (-0.11), [225] (+1.26). – Die letzten fünf Fraktionen (2.5 mg) wiesen positive Drehwerte auf: $[+7.2]_{D}^{DT}$ (*n*-Heptan). – CD (MeOH): λ_{max} [nm] ($\Delta\epsilon$): [290] (+0.24), [225] (-2.44). – UV (CHCl₃): 0.91 × 10⁴ (290 nm), 5.8 × 10⁴ (245 nm), 4.5 × 10⁴ (225 nm).

¹⁾ B. Kainradl, E. Langer, H. Lehner und K. Schlögl, Liebigs Ann. Chem. 766, 16 (1972).

²⁾ F. Vögtle, K. Meurer, A. Mannschreck, G. Stühler, H. Puff, A. Roloff und R. Sievers, Chem. Ber. 116, 2630 (1983).

³⁾ K. Meurer, F. Vögtle, A. Mannschreck, G. Stühler, H. Puff und A. Roloff, J. Org. Chem. 49, 3484 (1984).

⁴⁾ K. Schlögl, Top. Curr. Chem. 125, 27 (1984).

- ⁵⁾ K. Meurer und F. Vögtle, Top. Curr. Chem. 127, 1 (1985); M. Nakazaki, Top. Stereochem. 15, 199 (1984).
- ⁶⁾ F. Vögtle, M. Palmer, E. Fritz, U. Lehmann, K. Meurer, A. Mannschreck, F. Kastner, H. Irngartinger, U. Huber-Patz, H. Puff und E. Friedrichs, Chem. Ber. 116, 3112 (1983).
- ^{7) 7a)} M. Haenel und H. A. Staab, Chem. Ber. 106, 2203 (1973). ^{7b)} F. Vögtle, R. Schäfer, L. Schunder und P. Neumann, Liebigs Ann. Chem. 734, 102 (1970).
- ⁸⁾ ^{8a} R. A. Mitchell, R. J. Carruthers, L. Mazuch und T. W. Dingle, J. Am. Chem. Soc. 104, 2544 (1982). ^{8b} R. A. Mitchell, J. S. H. Yan und T. W. Dingle, ebenda 104, 2551 (1982).
- 9) Nomenklatur: F. Vögtle und P. Neumann, Tetrahedron 26, 5847 (1970).
- 10) L. Rossa und F. Vögtle, Top. Curr. Chem. 113, 1 (1983).
- ¹¹⁾ Überblick: B. Klieser, L. Rossa und F. Vögtle, Kontakte (Merck) 1984 (1), 3.
- ¹² B. V. Vriessma, J. Buter und R. M. Kellogg, J. Org. Chem. 49, 110 (1984); J. Buter und R. M. Kellogg, ebenda 46, 4481 (1983).
- ¹³⁾ F. Vögtle und F. Ley, Chem. Ber. 116, 3000 (1983); F. Vögtle und J. Franke, unveröffentlichte Ergebnisse.
- ¹⁴⁾ F. Vögtle und W. Kißener, Chem. Ber. 117, 2538 (1984). F. Vögtle, P. Mayenfels und F. Luppertz, Synthesis 1984, 580.
- 15) G. Illuminati, L. Mandolini und B. Masci, J. Am. Chem. Soc. 105, 555 (1983).
- ¹⁶) F. Vögtle und A. H. Effler, Chem. Ber. 102, 3071 (1969).
- 17) K. Meurer und F. Vögtle, unveröffentlichte Ergebnisse.
- ¹⁸) Übersicht: F. Vögtle und L. Rossa, Angew. Chem. 91, 534 (1979); Angew. Chem., Int. Ed. Engl. 18, 515 (1979).
- ¹⁹⁾ R. H. Mitchell und V. Boekelheide, J. Chem. Soc. D 1970, 1555; W. Anker, G. W. Bushnell und R. H. Mitchell, Can. J. Chem. 57, 3080 (1979); R. H. Mitchell und R. J. Carruthers, Tetrahedron Lett. 1975, 4331.
- ²⁰⁾ F. Bottino, S. Foti, S. Pappalardo, P. Finocchiaro und M. Fernegia, J. Chem. Soc., Perkin Trans. 1 1978, 198.
- ²¹⁾ Kristallographische Daten: monoklin, a = 11.189(9) Å, b = 9.173(10) Å, c = 14.735(17) Å, $\beta = 112.25(7)^\circ$; Raumgruppe $P2_1/c$ (Nr. 14, Int. Tables), V = 1399 Å³, Z = 4. Wir danken Prof. Dr. H. Puff und Herrn A. Roloff für diese Untersuchung.
- ²²⁾ P. Block und M. S. Newman, Org. Synth. 48, 120 (1968).
- 23) Y. Okamoto, H. Urakawa, K. Ohta und H. Yuki, Macromolecules 11, 719 (1978).
- ²⁴⁾ K. Meurer, A. Aigner und F. Vögtle, J. Incl. Phenom. 3, 51 (1985).
- 25) Prof. Dr. A. Mannschreck, Univ. Regensburg, persönliche Mitteilung.
- ²⁶⁾ W. H. Pirkle, J. M. Finn, B. C. Hamper, J. Schreiner und J. R. Pribish, in: Asymmetric Reactions and Processes in Chemistry (E. L. Eliel und S. Otsuka, Hrsg.), ACS Symposium Series, Bd. 185, S. 245, Kap. 18, Washington 1982.
- ²⁷⁾ F. Vögtle, Chem.-Ztg. 96, 396 (1972).
- ²⁸⁾ F. Vögtle, R. G. Lichtenthaler und M. Zuber, Chem. Ber. 106, 719 (1973).
- ²⁹⁾ L. Horner und E. H. Winkelmann, Angew. Chem. 71, 349 (1959).

[16/85]